Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Article in English | MEDLINE | ID: mdl-38123155

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ligands , Receptors, G-Protein-Coupled , Ion Channels/chemistry , Receptors, Cytoplasmic and Nuclear
2.
Sci Rep ; 13(1): 15833, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739972

ABSTRACT

Chronic smoking causes dysfunction of vascular endothelial cells, evident as a reduction of flow-mediated dilation in smokers, but the role of nicotine is still controversial. Given the increasing use of e-cigarettes and other nicotine products, it appears essential to clarify this issue. We studied extracts from cigarette smoke (CSE) and vapor from e-cigarettes (EVE) and heated tobacco (HTE) for their effects on vascular relaxation, endothelial nitric oxide signaling, and the activity of soluble guanylyl cyclase. The average nicotine concentrations of CSE, EVE, and HTE were 164, 800, and 85 µM, respectively. At a dilution of 1:3, CSE almost entirely inhibited the relaxation of rat aortas and porcine coronary arteries to acetylcholine and bradykinin, respectively, while undiluted EVE, with a 15-fold higher nicotine concentration, had no significant effect. With about 50% inhibition at 1:2 dilution, the effect of HTE was between CSE and EVE. Neither extract affected endothelium-independent relaxation to an NO donor. At the dilutions tested, CSE was not toxic to cultured endothelial cells but, in contrast to EVE, impaired NO signaling and inhibited NO stimulation of soluble guanylyl cyclase. Our results demonstrate that nicotine does not mediate the impaired endothelium-dependent vascular relaxation caused by smoking.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Tobacco Smoke Pollution , Rats , Animals , Swine , Nicotine/pharmacology , Endothelial Cells , Nitric Oxide , Soluble Guanylyl Cyclase , Endothelium
3.
Commun Biol ; 6(1): 504, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165086

ABSTRACT

The occurrence of NO/cGMP signalling in cardiac cells is a matter of debate. Recent measurements with a FRET-based cGMP indicator in isolated cardiac cells revealed NO-induced cGMP signals in cardiac fibroblasts while cardiomyocytes were devoid of these signals. In a fibroblast/myocyte co-culture model though, cGMP formed in fibroblasts in response to NO entered cardiomyocytes via gap junctions. Here, we demonstrate gap junction-mediated cGMP transfer from cardiac fibroblasts to myocytes in intact tissue. In living cardiac slices of mice with cardiomyocyte-specific expression of a FRET-based cGMP indicator (αMHC/cGi-500), NO-dependent cGMP signals were shown to occur in myocytes, to depend on gap junctions and to be degraded mainly by PDE3. Stimulation of NO-sensitive guanylyl cyclase enhanced Forskolin- and Isoproterenol-induced cAMP and phospholamban phosphorylation. Genetic inactivation of NO-GC in Tcf21-expressing cardiac fibroblasts abrogated the synergistic action of NO-GC stimulation on Iso-induced phospholamban phosphorylation, identifying fibroblasts as cGMP source and substantiating the necessity of cGMP-transfer to myocytes. In sum, NO-stimulated cGMP formed in cardiac fibroblasts enters cardiomyocytes in native tissue where it exerts an inhibitory effect on cAMP degradation by PDE3, thereby increasing cAMP and downstream effects in cardiomyocytes. Hence, enhancing ß-receptor-induced contractile responses appears as one of NO/cGMP's functions in the non-failing heart.


Subject(s)
Heart , Cells, Cultured , Animals , Mice , Fibroblasts/metabolism , Cyclic GMP/metabolism , Nitric Oxide/metabolism , Muscle Cells/metabolism , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Signal Transduction , Cell Survival
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1669-1686, 2023 08.
Article in English | MEDLINE | ID: mdl-37079081

ABSTRACT

Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.


Subject(s)
Cyclic GMP , Guanylate Cyclase , Male , Humans , Guanylate Cyclase/metabolism , Soluble Guanylyl Cyclase/metabolism , Cyclic GMP/metabolism , Signal Transduction , Research , Nitric Oxide/metabolism
6.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36259389

ABSTRACT

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Subject(s)
Heart Failure , Hypertension , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , X-Ray Microtomography , Induced Pluripotent Stem Cells/metabolism , Hypertension/complications , Hypertension/genetics , Myocytes, Cardiac/metabolism , Cardiomegaly , RNA
7.
Eur J Neurosci ; 55(1): 18-31, 2022 01.
Article in English | MEDLINE | ID: mdl-34902209

ABSTRACT

In the central nervous system, the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling cascade has an established role in fine-tuning of synaptic transmission. In the present study, we asked which isoform of NO-sensitive guanylyl cyclase, NO-GC1 or NO-GC2, is responsible for generation of N-methyl-d-aspartate (NMDA)- and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-induced cGMP signals and which of the phosphodiesterases (PDEs) is responsible for degradation. To this end, we performed live cell fluorescence measurements of primary hippocampal neurons isolated from NO-GC isoform-deficient mice. Although both isoforms contributed to the NMDA- and AMPA-induced cGMP signals, NO-GC2 clearly played the predominant role. Whereas under PDE-inhibiting conditions the cGMP levels elicited by both glutamatergic ligands were comparable, NMDA-induced cGMP signals were clearly higher than the AMPA-induced ones in the absence of PDE inhibitors. Thus, AMPA-induced cGMP signals are more tightly controlled by PDE-mediated degradation than NMDA-induced signals. In addition, these findings are compatible with the existence of at least two different pools of cGMP in both of which PDE1 and PDE2-known to be highly expressed in the hippocampus-are mainly responsible for cGMP degradation. The finding that distinct pools of cGMP are equipped with different amounts of PDEs highlights the importance of PDEs for the shape of NO-induced cGMP signals in the central nervous system.


Subject(s)
N-Methylaspartate , Nitric Oxide , Animals , Cyclic GMP/metabolism , Hippocampus/metabolism , Mice , N-Methylaspartate/pharmacology , Nitric Oxide/metabolism , Phosphoric Diester Hydrolases/metabolism , Protein Isoforms/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
8.
Br J Pharmacol ; 178 Suppl 1: S313-S411, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34529828

ABSTRACT

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15542. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ion Channels , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-Coupled
9.
Cells ; 9(11)2020 11 08.
Article in English | MEDLINE | ID: mdl-33171621

ABSTRACT

In the NO/cGMP signaling cascade, relevant in the cardiovascular system, two NO-sensitive guanylyl cyclase (NO-GC) isoforms are responsible for NO-dependent cGMP generation. Here, the impact of the major NO-GC isoform, NO-GC1, on fibrosis development in the cardiovascular system was studied in NO-GC1-deficient mice treated with AngiotensinII (AngII), known to induce vascular and cardiac remodeling. Morphometric analysis of NO-GC1 KO's aortae demonstrated an enhanced increase of perivascular area after AngII treatment accompanied by a higher aortic collagen1 mRNA content. Increased perivascular fibrosis also occurred in cardiac vessels of AngII-treated NO-GC1 KO mice. In line, AngII-induced interstitial fibrosis was 32% more pronounced in NO-GC1 KO than in WT myocardia associated with a higher cardiac Col1 and other fibrotic marker protein content. In sum, increased perivascular and cardiac interstitial fibrosis together with the enhanced collagen1 mRNA content in AngII-treated NO-GC1-deficient mice represent an exciting manifestation of antifibrotic properties of cGMP formed by NO-GC1, a finding with great pharmaco-therapeutic implications.


Subject(s)
Cardiovascular System/enzymology , Cardiovascular System/pathology , Guanylate Cyclase/metabolism , Nitric Oxide/metabolism , Angiotensin II , Animals , Aorta/pathology , Fibrosis , Male , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Circulation ; 142(2): 133-149, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32524868

ABSTRACT

BACKGROUND: High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (PDE3A); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking. METHODS: We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways. RESULTS: We describe a novel mutation within a 15 base pair (bp) region of the PDE3A gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function. CONCLUSIONS: The mutated PDE3A gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hypertension/genetics , Mutation , Alleles , Amino Acid Substitution , Animals , Animals, Genetically Modified , Arterial Pressure , Biomarkers/blood , Biomarkers/urine , Brachydactyly/diagnosis , Brachydactyly/genetics , CRISPR-Cas Systems , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Disease Models, Animal , Enzyme Activation , Gene Targeting , Genetic Association Studies/methods , Genotype , Immunohistochemistry , Isoenzymes , Male , Pedigree , Phenotype , Radiography , Rats , Renin-Angiotensin System/genetics
11.
Cereb Cortex ; 30(4): 2128-2143, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31711126

ABSTRACT

The nitric oxide (NO)/cGMP signaling cascade has an established role in synaptic plasticity. However, with conventional methods, the underlying cGMP signals were barely detectable. Here, we set out to confirm the well-known NMDA-induced cGMP increases, to test the impact of AMPA on those signals, and to identify the relevant phosphodiesterases (PDEs) using a more sensitive fluorescence resonance energy transfer (FRET)-based method. Therefore, a "knock-in" mouse was generated that expresses a FRET-based cGMP indicator (cGi-500) allowing detection of cGMP concentrations between 100 nM and 3 µM. Measurements were performed in cultured hippocampal and cortical neurons as well as acute hippocampal slices. In hippocampal and cortical neurons, NMDA elicited cGMP signals half as high as the ones elicited by exogenous NO. Interestingly, AMPA increased cGMP independently of NMDA receptors and dependent on NO synthase (NOS) activation. NMDA- and AMPA-induced cGMP signals were not additive indicating that both pathways converge on the level of NOS. Accordingly, the same PDEs, PDE1 and PDE2, were responsible for degradation of NMDA- as well as AMPA-induced cGMP signals. Mechanistically, AMPAR induced calcium influx through L-type voltage-gated calcium channels leading to NOS and finally NO-sensitive guanylyl cyclase activation. Our results demonstrate that in addition to NMDA also AMPA triggers endogenous NO formation and hence cGMP production.


Subject(s)
Calcium Channels, L-Type/metabolism , Cerebral Cortex/metabolism , Cyclic GMP/metabolism , Hippocampus/metabolism , Nitric Oxide/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Organ Culture Techniques
12.
PLoS One ; 14(9): e0222152, 2019.
Article in English | MEDLINE | ID: mdl-31498828

ABSTRACT

Electronic cigarette refill liquids are commercially provided with a wide variety of flavoring agents. A recent study suggested that several common flavors may scavenge nitric oxide (NO) and cause endothelial dysfunction. It was the aim of the present study to investigate the effects of these flavors on NO/cyclic GMP-mediated signaling and vascular relaxation. We tested the flavoring agents for effects on Ca2+-induced cGMP accumulation and NO synthase activation in cultured endothelial cells. NO scavenging was studied with NO-activated soluble guanylate cyclase and as NO release from a NO donor, measured with a NO electrode. Blood vessel function was studied with precontracted rat aortic rings in the absence and presence of acetylcholine or a NO donor. Cinnamaldehyde inhibited Ca2+-stimulated endothelial cGMP accumulation and NO synthase activation at ≥0.3 mM. Cinnamaldehyde and diacetyl inhibited NO-activated soluble guanylate cyclase with IC50 values of 0.56 (0.54-0.58) and 0.29 (0.24-0.36) mM, respectively, and caused moderate NO scavenging at 1 mM that was not mediated by superoxide anions. The other compounds did not scavenge NO at 1 mM. None of the flavorings interfered with acetylcholine-induced vascular relaxation, but they caused relaxation of pre-contracted aortas. The most potent compounds were eugenol and cinnamaldehyde with EC50 values of ~0.5 mM. Since the flavors did not affect endothelium-dependent vascular relaxation, NO scavenging by cinnamaldehyde and diacetyl does not result in impaired blood vessel function. Although not studied in vivo, the low potency of the compounds renders it unlikely that the observed effects are relevant to humans inhaling flavored vapor from electronic cigarettes.


Subject(s)
Aorta/drug effects , Aorta/physiology , Electronic Nicotine Delivery Systems , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Flavoring Agents/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Cyclic GMP/metabolism , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Vasodilation/drug effects
13.
Br J Pharmacol ; 176(24): 4696-4707, 2019 12.
Article in English | MEDLINE | ID: mdl-31423565

ABSTRACT

BACKGROUND AND PURPOSE: The intracellular signalling molecule cGMP, formed by NO-sensitive GC (NO-GC), has an established function in the vascular system. Despite numerous reports about NO-induced cGMP effects in the heart, the underlying cGMP signals are poorly characterized. EXPERIMENTAL APPROACH: Therefore, we analysed cGMP signals in cardiac myocytes and fibroblasts isolated from knock-in mice expressing a FRET-based cGMP indicator. KEY RESULTS: Whereas in cardiac myocytes, none of the known NO-GC-activating substances (NO, GC activators, and GC stimulators) increased cGMP even in the presence of PDE inhibitors, they induced substantial cGMP increases in cardiac fibroblasts. As cardiac myocytes and fibroblasts are electrically connected via gap junctions, we asked whether cGMP can take the same route. Indeed, in cardiomyocytes co-cultured on cardiac fibroblasts, NO-induced cGMP signals were detectable, and two groups of unrelated gap junction inhibitors abolished these signals. CONCLUSION AND IMPLICATION: We conclude that NO-induced cGMP formed in cardiac fibroblasts enters cardiac myocytes via gap junctions thereby turning cGMP into an intercellular signalling molecule. The findings shed new light on NO/cGMP signalling in the heart and will potentially broaden therapeutic opportunities for cardiac disease.


Subject(s)
Cyclic GMP/metabolism , Fibroblasts/metabolism , Gap Junctions/metabolism , Myocytes, Cardiac/metabolism , Nitric Oxide/pharmacology , Animals , Cells, Cultured , Coculture Techniques , Cyclic GMP/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Gap Junctions/drug effects , Gene Knock-In Techniques , Mice , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects
14.
Int J Mol Sci ; 19(8)2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30087260

ABSTRACT

Impaired NO-cGMP signaling has been linked to several neurological disorders. NO-sensitive guanylyl cyclase (NO-GC), of which two isoforms-NO-GC1 and NO-GC2-are known, represents a promising drug target to increase cGMP in the brain. Drug-like small molecules have been discovered that work synergistically with NO to stimulate NO-GC activity. However, the effects of NO-GC stimulators in the brain are not well understood. In the present study, we used Förster/fluorescence resonance energy transfer (FRET)-based real-time imaging of cGMP in acute brain slices and primary neurons of cGMP sensor mice to comparatively assess the activity of two structurally different NO-GC stimulators, IWP-051 and BAY 41-2272, in the cerebellum, striatum and hippocampus. BAY 41-2272 potentiated an elevation of cGMP induced by the NO donor DEA/NO in all tested brain regions. Interestingly, IWP-051 potentiated DEA/NO-induced cGMP increases in the cerebellum and striatum, but not in the hippocampal CA1 area or primary hippocampal neurons. The brain-region-selective activity of IWP-051 suggested that it might act in a NO-GC isoform-selective manner. Results of mRNA in situ hybridization indicated that the cerebellum and striatum express NO-GC1 and NO-GC2, while the hippocampal CA1 area expresses mainly NO-GC2. IWP-051-potentiated DEA/NO-induced cGMP signals in the striatum of NO-GC2 knockout mice but was ineffective in the striatum of NO-GC1 knockout mice. These results indicate that IWP-051 preferentially stimulates NO-GC1 signaling in brain slices. Interestingly, no evidence for an isoform-specific effect of IWP-051 was observed when the cGMP-forming activity of whole brain homogenates was measured. This apparent discrepancy suggests that the method and conditions of cGMP measurement can influence results with NO-GC stimulators. Nevertheless, it is clear that NO-GC stimulators enhance cGMP signaling in the brain and should be further developed for the treatment of neurological diseases.


Subject(s)
Brain/metabolism , Cyclic GMP/analysis , Guanylate Cyclase/metabolism , Nitric Oxide/metabolism , Animals , Cells, Cultured , Cyclic GMP/metabolism , Fluorescence Resonance Energy Transfer/methods , Mice, Knockout , Neuroimaging/methods , Neurons , Purkinje Cells
15.
Biochem Pharmacol ; 156: 168-176, 2018 10.
Article in English | MEDLINE | ID: mdl-30099008

ABSTRACT

Soluble guanylyl cyclase (sGC, EC 4.6.1.2) is a key enzyme in the regulation of vascular tone. In view of the therapeutic interest of the NO/cGMP pathway, drugs were developed that either increase the NO sensitivity of the enzyme or activate heme-free apo-sGC. However, modulation of sGC activity by endogenous agents is poorly understood. In the present study we show that the maximal activity of NO-stimulated purified sGC is significantly increased by cytosolic preparations of porcine coronary arteries. Purification of the active principle by several chromatographic steps resulted in a protein mixture consisting of 100, 70, and 40 kDa bands on SDS polyacrylamide gel electrophoresis. The respective proteins were identified by LC-MS/MS as gelsolin, annexin A6, and actin, respectively. Further purification resulted in loss of activity, indicating an interaction of sGC with a protein complex rather than a single protein. The partially purified preparation had no effect on basal sGC activity or enzyme activation by the heme mimetic BAY 60-2770, suggesting a specific effect on the conformation of the NO-bound heterodimeric holoenzyme. Since the three proteins identified are all related to contractile elements of smooth muscle, our data suggest that regulation of vascular tone involves a modulatory interaction of sGC with the cytoskeleton.


Subject(s)
Cytoskeletal Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/pharmacology , Soluble Guanylyl Cyclase/metabolism , Animals , Coronary Vessels , Cytoskeletal Proteins/genetics , Gene Expression Regulation, Enzymologic/drug effects , Soluble Guanylyl Cyclase/genetics , Swine
16.
Nitric Oxide ; 77: 44-52, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29684551

ABSTRACT

The intracellular messenger molecule cGMP has an established function in the regulation of numerous physiological events. Yet for the identification of further biological cGMP-mediated functions, precise information whether a cGMP response exists in a certain cell type or tissue is mandatory. In this review, the techniques to measure cGMP i.e. cGMP-formation, -degradation or levels are outlined and discussed. As a superior method to measure cGMP, the article focusses on FRET-based cGMP indicators, describes the different cGMP indicators and discusses their advantages and drawbacks. Finally, the successful applications of these cGMP indicators to measure cGMP responses in cells and tissues are outlined and summarized. Hopefully, with the availability of the FRET-based cGMP indicators, the knowledge about the cGMP responses in special cells or tissues is going to increase thereby allowing to assess further cGMP-mediated functional responses and possibly to address their pathophysiology with the available guanylyl cyclase activators, stimulators and PDE inhibitors.


Subject(s)
Cyclic GMP/metabolism , Fluorescence Resonance Energy Transfer , Animals , Cyclic GMP/biosynthesis , Guanylate Cyclase/metabolism , Humans , Nitric Oxide/metabolism , Signal Transduction
17.
Mol Pharmacol ; 93(2): 73-78, 2018 02.
Article in English | MEDLINE | ID: mdl-29138269

ABSTRACT

Belonging to the class of so-called soluble guanylate cyclase (sGC) activators, cinaciguat and BAY 60-2770 are interesting therapeutic tools for the treatment of various cardiovascular pathologies. The drugs are supposed to preferentially stimulate oxidized or heme-depleted, but not native sGC. Since this concept has been challenged by studies demonstrating complete relaxation of nondiseased vessels, this study was designed to reinvestigate the mode of action in greater detail. To this purpose, the effect of cinaciguat was studied on vessel tone of porcine coronary arteries and rat thoracic aortas. Organ bath studies showed that the compound caused time- and concentration-dependent relaxation of precontracted vessels with a maximal effect observed at 90 minutes. The dilatory response was not affected by extensive washout of the drug. Cinaciguat-induced vasodilation was associated with a time- and concentration-dependent increase of cGMP levels. Experiments with purified sGC in the presence of Tween 20 showed that cinaciguat activates the heme-free enzyme in a concentration-dependent manner with an EC50 value of ∼0.2 µM and maximal cGMP formation at 10 µM. By contrast, the effect of cinaciguat on 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one-oxidized (ferric) sGC was moderate, reaching ∼10%-15% of maximal activity. Dilution experiments of cinaciguat/Tween 20-preincubated sGC revealed the irreversible character of the drug. Assuming a sensitive balance between heme-free, ferric, and nitric oxide-sensitive ferrous sGC in cells and tissues, we propose that cinaciguat by virtue of its irreversible mode of action is capable of shifting this equilibrium toward the heme-free apo-sGC species.


Subject(s)
Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Mimicry , Protoporphyrins/metabolism , Soluble Guanylyl Cyclase/antagonists & inhibitors , Vasodilation/drug effects , Animals , Aorta, Thoracic/physiology , Cattle , Coronary Vessels/metabolism , Cyclic GMP/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Enzyme Activation , Enzyme Stability , Lung/drug effects , Lung/enzymology , Protoporphyrins/chemistry , Rats, Sprague-Dawley , Soluble Guanylyl Cyclase/metabolism , Swine , Vasodilator Agents/pharmacology
18.
Curr Med Chem ; 23(24): 2653-2665, 2016.
Article in English | MEDLINE | ID: mdl-27776472

ABSTRACT

NO-sensitive guanylyl cyclase (NO-GC) acts as the receptor for nitric oxide and by the increase in cGMP executes most of the NO effects in the cardiovascular and neuronal system. Two isoforms of NO-GC exist whose existence has not been paid much attention to probably because they reveal comparable regulatory and catalytic properties and therefore cannot be differentiated in vivo. Analysis of mice in which either one of the isoforms has been genetically deleted unequivocally establishes the coexpression of NO-GC1 and NOGC2 in any tissue tested to date with the exception of platelets. In tissues other than brain and platelets, no particular function could be ascribed to a specific NO-GC isoform so far. In contrast, NO-GC1 and NO-GC2 serve different functions in the central nervous system. With NO-GC1`s presynaptic role and NO-GC2`s postsynaptic action, two NO/cGMP pathways have been shown to exist that enhance the strength of synaptic transmission on either side of the synaptic cleft.


Subject(s)
Guanylate Cyclase/metabolism , Nitric Oxide/metabolism , Animals , Blood Platelets/metabolism , Blood Pressure , Cyclic GMP/metabolism , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/chemistry , Muscle, Smooth/metabolism , Neurons/metabolism , PDZ Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Synaptic Transmission
19.
J Biol Chem ; 291(46): 24076-24084, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27679490

ABSTRACT

Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN), resulting in activation of soluble guanylate cyclase (sGC) and cGMP-mediated vasodilation. We have previously shown that a minor reaction of ALDH2-catalyzed GTN bioconversion, accounting for about 5% of the main clearance-based turnover yielding inorganic nitrite, results in direct NO formation and concluded that this minor pathway could provide the link between vascular GTN metabolism and activation of sGC. However, lack of detectable NO at therapeutically relevant GTN concentrations (≤1 µm) in vascular tissue called into question the biological significance of NO formation by purified ALDH2. We addressed this issue and used a novel, highly sensitive genetically encoded fluorescent NO probe (geNOp) to visualize intracellular NO formation at low GTN concentrations (≤1 µm) in cultured vascular smooth muscle cells (VSMC) expressing an ALDH2 mutant that reduces GTN to NO but lacks clearance-based GTN denitration activity. NO formation was compared with GTN-induced activation of sGC. The addition of 1 µm GTN to VSMC expressing either wild-type or C301S/C303S ALDH2 resulted in pronounced intracellular NO elevation, with maximal concentrations of 7 and 17 nm, respectively. Formation of GTN-derived NO correlated well with activation of purified sGC in VSMC lysates and cGMP accumulation in intact porcine aortic endothelial cells infected with wild-type or mutant ALDH2. Formation of NO and cGMP accumulation were inhibited by ALDH inhibitors chloral hydrate and daidzin. The present study demonstrates that ALDH2-catalyzed NO formation is necessary and sufficient for GTN bioactivation in VSMC.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Nitric Oxide/metabolism , Nitroglycerin/pharmacokinetics , Aldehyde Dehydrogenase, Mitochondrial/antagonists & inhibitors , Aldehyde Dehydrogenase, Mitochondrial/genetics , Amino Acid Substitution , Animals , Cattle , Chloral Hydrate/pharmacology , Humans , Isoflavones/pharmacology , Mice , Mice, Knockout , Mutation, Missense , Nitroglycerin/pharmacology , Swine
20.
Nitric Oxide ; 54: 8-14, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26805578

ABSTRACT

Scavenging of nitric oxide (NO) often interferes with studies on NO signaling in cell-free preparations. We observed that formation of cGMP by NO-stimulated purified soluble guanylate cyclase (sGC) was virtually abolished in the presence of cytosolic preparations of porcine coronary arteries, with the scavenging activity localized in the tunica media (smooth muscle layer). Electrochemical measurement of NO release from a donor compound and light absorbance spectroscopy showed that cytosolic preparations contained a reduced heme protein that scavenged NO. This protein, which reacted with anti-human hemoglobin antibodies, was efficiently removed from the preparations by haptoglobin affinity chromatography. The cleared cytosols showed only minor scavenging of NO according to electrochemical measurements and did not decrease cGMP formation by NO-stimulated sGC. In contrast, the column flow-through caused a nearly 2-fold increase of maximal sGC activity (from 33.1 ± 1.6 to 54.9 ± 2.2 µmol × min(-1) × mg(-1)). The proteins retained on the affinity column were identified as hemoglobin α and ß subunits. The results indicate that hemoglobin, presumably derived from vasa vasorum erythrocytes, is present and scavenges NO in preparations of porcine coronary artery smooth muscle. Selective removal of hemoglobin-mediated scavenging unmasked stimulation of maximal NO-stimulated sGC activity by a soluble factor expressed in vascular tissue.


Subject(s)
Coronary Vessels/metabolism , Hemoglobins/metabolism , Nitric Oxide/metabolism , Tunica Media/metabolism , Animals , Cattle , Cyclic GMP/metabolism , Cytoglobin , Globins/metabolism , Haptoglobins/metabolism , Humans , In Vitro Techniques , Soluble Guanylyl Cyclase/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...